052708RB

SPECIFICATION

P/N: P6400C 1FN8

400W ATX Output Power Universal AC Input

High Quality 1U Mini **Switching Power Supply**

*** Specification Approval ***

This specification (total 7 pages including drawings) is approved in entirety by:

Company Name Signature **Print Name** Date

Specification subject to change without prior notice.

3261 Keller St. Santa Clara, CA 95054 Tel: 408-980-9813

E-mail: infor@topmicro.com Online: www.topmicro.com

1.0 Input Characteristics:

1.1 Input Voltage range:90ac to 264 Vac full range

MINIMUM	NOMINAL	MAXIMUM	UNITS
90	100-240	264	Vrms

1.2 Input Frequency

47Hz ~ 63Hz

1.3 Maximum input ac current:

6.3A max.@115Vac ;3A max.@230Vac

1.4 Inrush current: No damage shall occur to the power supply and the fuse shall not open or exceed its maximum rating:

100A max @ 230Vac 25 °C cold start.

1.5 Power Efficiency

80% (min.) at 20%,50%,100% loading line input.

- 1.6 Harmonic distortion production:comply with IEC 1000-3-2 with full load conditions.
- 1.7 PFC value range :0.9min.@120V/50HZ;0.8min.@240V/50HZ
- **1.8 LEAKAGE CURRENT**

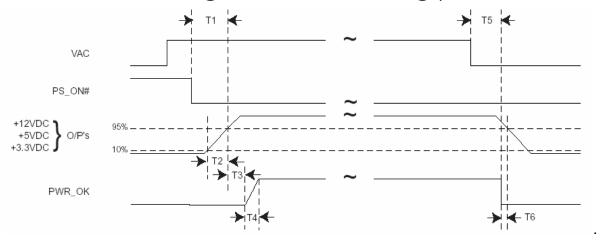
3.5mA (max.)

2.0 OUTPUT:

Voltage	+5V	+12V1	+12V2	+3.3V	-12V	+5Vsb
Max load	18A	18A	18A	18A	0.8A	2.5A
Min load	0.5A	1A	0.5A	1A	0.0A	0.0A
Peak load						

Regulation	±4%	±4%	±4%	±4%	±10%	±5%
Ripple	50mV	120mV	120mV	50mV	120mV	50mV
Ripple & Noise	50mV	120mV	120mV	50mV	120mV	50mV

Note:


- The continuous total output power is 400W max.
- The combined power of +5V and +3.3V is 140W max.
- The combined power of +12V1 and +12V2 is 32A max.
- Add 0.1uF and 10uF capacitors across output terminal during ripple & noise test.
- Noise test—Noise Bandwidth is form DC to 20MHz.

2.1 Remote On/Off

TTL High/PS-OFF; TTL Low/PS-ON

VIL=0.8Vmax, IIL=-1.6mAmax @Vin=0.4V

VIH=2.0Vmin @lin=-200uA, VIH=5.25Vmax @open ckt

Timing Schematic Diagram

2.2 Turn-On Delay Time

100 ~ 500 ms max.(at full load and nominal Input).

2.3 Power On Time (T1)

The power-on time is defined as the time from when PS_ON# is pulled low to when the +12 VDC, +5 VDC, and +3.3 VDC outputs are within their regulation ranges. The power-on time shall be less than 500 ms (T1< 500 ms).

2.4 Rise Time (T2)

20ms max at full load.

2.5 Power Good Delay Time (T3)

Test when main output voltages reach their regulation ranges to PG rise up: 100ms to 500 ms.

2.6 Power Good Rise Time (T4)

The Power Good Rise Time shall be less than 10 ms (T4< 500 ms).

2.7 Hold-Up Time (T5)

16 msec (minimum) at 80% of full load at 115Vac input.

2.8 Power Fail Delay Time (T6)

Power-down warning >1 msec.

2.9 Transient Over shoot

Summarizes 20% load change output transient step sizes * ① for each output when at typical load & with following capacitor load on each output terminal , The transient load slew rate is = 0.5 A/ μ s. Output voltages should not over +/-10% of nominal value.

+5V	+3.3V	+12V1	+12V ₂	+12V3	+12V4	-12V	+5Vsb
1000uF	1000uF	2200uF	2200uF	2200uF	2200uF	350uF	350uF

3.0 Protections:

If the power supply protection latch off all main output. (when OCP, OVP or short

protection is working) reset by cycling remote on/off control or AC power . +5Vsb is Recovery.

3.1 Over Power Protection

Protection at 110%~150% full load

3.2 Over Voltage Protection

+3.3V output 4.10 ±0.40V

+5.0V output 6.25 ±0.75V

+12.0V output 14.6 ±1.00V

3.3 Short Circuit Protection

The power supply shall shut down and latch off for shorting +5V,+12V,-12V,+3.3V rail to ground. Shorting +5Vsb to ground will cause power unit to latch down and automatically recover when the fault condition is removed.

3.4 Over Current Protection

Output	Min	Max	unit
+12V	25	40	Α
+5V	25	40	Α
+3.3V	25	40	A

3.5 Over Temperature Protection:

The power supply shall shut down when ambient temperature exceed 60° C

4.0 Environment:

4.1 OPERATING TEMP. 0 °C to +50 °C

-20 °C to +60 °C **4.2 STORAGE TEMP.**

10% to 90%, non-condensing at 40 °C 4.3 OPERATING HUMIDITY

5% to 95%, non-condensing at 50 °C 4.4 STORAGE HUMIDITY

4.5 OPERATING ALTITUDE 0 to 10,000 feet

4.6 STORAGE ALTITUDE 0 to 50,000 feet

4.7 Electrostatic Discharge (ESD)

The power supply shall withstand the following ESD conditions at any point on the power supply.

- a) ±8kV with no abnormal operation
- b) ±8kV with no damage to power supply
- c) Transients as defined in IEC 801-2, Level 4

5.0 Burn-In:

unit shall be burn in under 45°C±3°C, with 115Vac and outputs at max load

6.0 HI-POT (Input/Output isolation)

6.1 PRIMARY TO SECONDARY

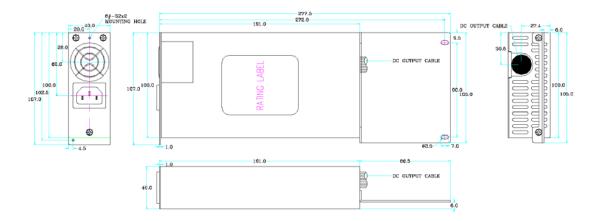
Primary to secondary 4242Vdc for 1 minute

6.2 INSULATION RESISTANCE

Primary to earth ground 500Vdc, 50M ohms Min.

7.0 EMI

7.1 MEET FCC: Class B


7.2 MEET CISPR 22: Class B

7.3 MEET VCCI: Class B

8.0 SAFETY

- 8.1 UL/CUL (UL 60950)
- 8.2 TUV EN60950
- 8.3 CB (IEC 60950)

